John–Nirenberg inequality and atomic decomposition for noncommutative martingales
نویسندگان
چکیده
منابع مشابه
A noncommutative Davis’ decomposition for martingales
The theory of noncommutative martingale inequalities has been rapidly developed since the establishment of the noncommutative Burkholder-Gundy inequalities in [12]. Many of the classical martingale inequalities has been transferred to the noncommutative setting. These include, in particular, the Doob maximal inequality in [3], the Burkholder/Rosenthal inequality in [5], [8], several weak type (...
متن کاملFreedman’s Inequality for Matrix Martingales
Freedman’s inequality is a martingale counterpart to Bernstein’s inequality. This result shows that the large-deviation behavior of a martingale is controlled by the predictable quadratic variation and a uniform upper bound for the martingale difference sequence. Oliveira has recently established a natural extension of Freedman’s inequality that provides tail bounds for the maximum singular val...
متن کاملDoob’s Inequality for Non-commutative Martingales
Introduction: Inspired by quantum mechanics and probability, non-commutative probability has become an independent field of mathematical research. We refer to P.A. Meyer’s exposition [Me], the successive conferences on quantum probability [AvW], the lecture notes by Jajte [Ja1, Ja2] on almost sure and uniform convergence and finally the work of Voiculescu, Dykema, Nica [VDN] and of Biane, Speic...
متن کاملLecture 7-8: Martingales and Azuma's Inequality
We have seen that if X X1 + · · · + Xn is a sum of independent {0, 1} random variables, then X is tightly concentrated around its expected value [X]. The fact that the random variables were {0, 1}-valued was not essential; similar concentration results hold if we simply assume that they are in some bounded range [−L, L]. One can also relax the independence assumption, as we will see next. Cons...
متن کاملA Weak Type Inequality for Non-commutative Martingales and Applications
X iv :m at h/ 04 09 13 9v 1 [ m at h. FA ] 8 S ep 2 00 4 A WEAK TYPE INEQUALITY FOR NON-COMMUTATIVE MARTINGALES AND APPLICATIONS NARCISSE RANDRIANANTOANINA Abstract. We prove a weak-type (1,1) inequality for square functions of noncommutative martingales that are simultaneously bounded in L and L. More precisely, the following non-commutative analogue of a classical result of Burkholder holds: ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2012
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2012.05.013